

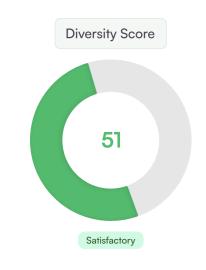
Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

John Doe | VT1-123DC

For enquiries, email hello@vitract.com

This is your complete gut microbiome analysis containing condition related findings with food and supplements recommendation to optimize your gut health.


SECTION 1: Summary of your results

0-49 represents Poor • 50-79 represents Needs work • 80-100 represents Satisfactory

Your Gut Health Score

Your Gut Health Score is the percentage value of all the microbes enlisted in section 2 within the optimal range. Assuming all your scores are within optimal ranges, then your score will be 100. For every taxa that is out of range, your score decreases accordingly.

Your Diversity Score

Your Diversity Score is computed using the Shannon Index. This accounts for the richness and evenness of the species found in your gut. Your score is a percentage value compared to the highest Shannon score of the population who have taken the Vitract Gut Microbiome Test. Note that apart from diet, other factors such as age, geographical location, genetics, sleep patterns, antibiotic use, etc, can affect your diversity score

Disclaimer

• This report is not a diagnosis. It is for educational and informational purposes only. All associations between your microbiome profile, disease conditions and recommended food suggestions, are based on published peer-reviewed research papers. Note that other factors such as genetics, lifestyle, environment, etc, can contribute to disease or health associations. Always seek the advice of your doctor or healthcare provider for any issues relating to your diagnosis, disease prevention, impairment, symptoms or treatment. This report does not replace the role of your healthcare provider.

Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

John Doe VT1-123DC

For enquiries, email hello@vitract.com

SECTION 2: Microbial life forms

BACTERIA

Health-associated bacteria

Probiotic bacteria Commensals

Disease-associated bacteria

Pathobiont overgrowth Pathogens

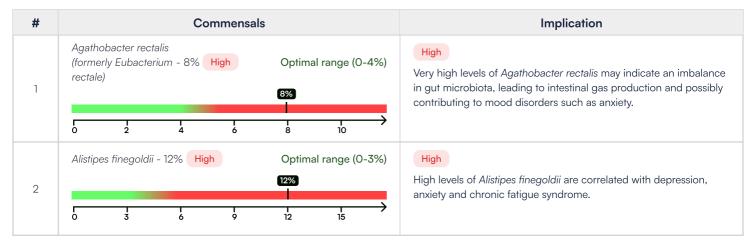
Probiotic bacteria - 52

Probiotic bacteria are live microorganisms that, when consumed in sufficient quantities, provide health benefits by promoting a balanced and healthy gut microbiota.

Low Optimal High represents bacteria levels.

Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing


John Doe | VT1-123DC 17 Feb 2025

For enquiries, email hello@vitract.com

Probiotic bacteria **Implication** Blautia wexlerae - 0.30% Low Optimal range (0.4-7%) Low 0.30% Low levels of Blautia wexlerae may impair fiber digestion, and 7 contribute to digestive issues like constipation and metabolic disorders like type 2 diabetes. Faecalibacterium - 5% Low Low Optimal range (>=10%) prausnitzii F prausnitzii produces butyrate which serves as an energy source 5% for intestinal cells. Low levels of F. prausnitzii can result in reduced 8 nutrient supply to intestinal cells, promote chronic inflammation, 10 25 20 and negatively impact gut-brain communication. Lactobacillus - 0% Low Optimal range (0.01-1%) Low 0% Low levels of Lactobacillus can lead to an imbalance in the gut 9 microbiota, which is associated with various gastrointestinal issues, such as diarrhea, irritable bowel syndrome, and inflammatory bowel 0 1.2 0.9 diseases. Roseburia - 0.51% Low Low Optimal range (5-10%) 0.51% Low levels of Roseburia can lead to an imbalance in the gut 10 microbiota, which is associated with various gastrointestinal disorders, including irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBD). Ruminococcus - 20% High Optimal range (0-15%) High 20% An over-abundance of certain strains of Ruminococcus has been associated with health conditions, including obesity and metabolic 11 disorders. Ruminococcus bromii - 8% High Optimal range (0-6%) High 8% Very high levels of Ruminococcus bromii could disrupt gut balance, 12 potentially leading to digestive discomfort like bloating, gas, and poor regulation of butyrate production.

Commensals - 84

Gut commensals are microorganisms that coexist with the host in the gastrointestinal tract without causing harm. They contribute to host wellbeing and gut homeostasis.

Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

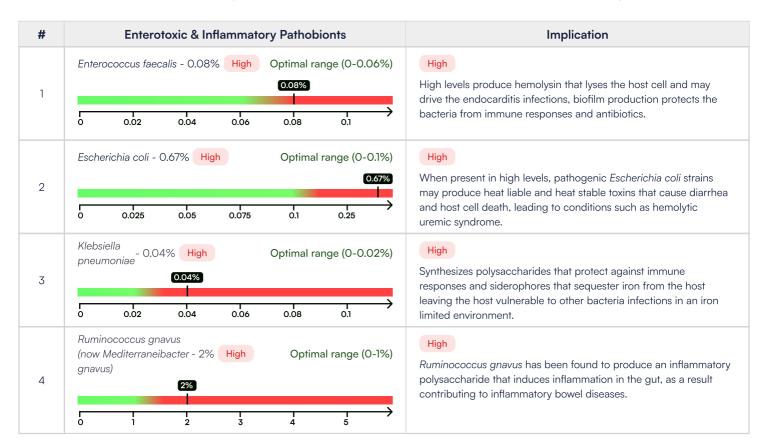
John Doe VT1-123DC

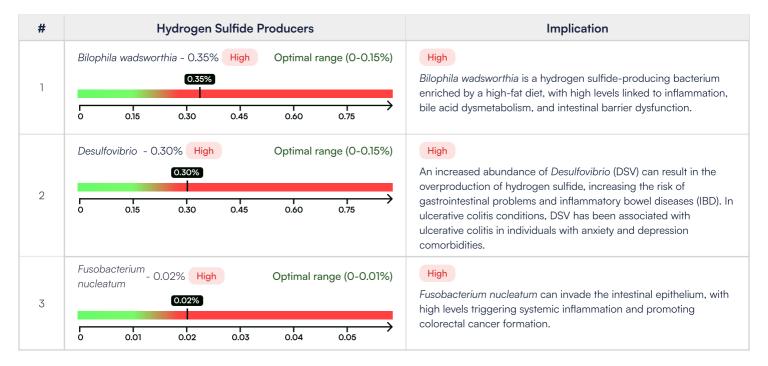
For enquiries, email hello@vitract.com

Commensals **Implication** Alistipes putredinis - 12% High Optimal range (0-9%) High 12% High levels of Alistipes putredinis are correlated with depression, 3 anxiety and chronic fatigue syndrome. Anaerobutyricum hallii High (formerly Eubacterium - 4% High Optimal range (0-1%) High Anaerobutyricum hallii levels could contribute to increased hallii) production of hydrogen and methane gases, potentially causing 4 bloating, discomfort, or gas. Bacteroides - 25% High Optimal range (0-20%) High Increased levels of certain Bacteroides spp. have been associated 5 with increased mucosal inflammation and the development of colorectal and invasive breast cancer. 10 15 20 Bacteroides fragilis - 8% High Optimal range (0-2%) High Very high levels of Bacteroides fragilis has been associated with 8% 6 abscess formation; and an increase in autoimmune conditions like Ulcerative colitis and Crohn's Disease. 0 10 **Bacteroides** High - 12% High Optimal range (0-3%) thetaiotaomicron Very high levels of Bacteroides thetaiotaomicron may lead to 12% 7 overproduction of byproducts from fiber fermentation. Oxalobacter formigenes - 0% Low Optimal range (0.01-1%) Low 0% Oxalobacter formigenes is crucial for oxalate degradation, and low 8 levels can lead to toxic oxalate buildup, increasing the risk of nephrolithiasis. 1.2 0.6 0.9 Phocaeicola vulgatus - 20% High Optimal range (0-10%) High 20% Very high levels of *Phocaiecola vulgatus* may interfere with intestinal permeability, increase risk of obesity and insulin resistance, 0 including disrupting normal digestion. 20 Optimal range (0-20% for non-Prevotella copri High (now Segatella - 40% High vegetarians) Very high levels of Prevotella copri may contribute to gut dysbiosis, Optimal range (0-30% for vegetarians) increased production of proinflammatory markers, and have been 10 40% associated with arthritis. 10 40 20 Streptococcus - 0.6% High High Optimal range (0-0.3%) thermophilus Elevated Streptococcus thermophilus levels may suggest an 0.6% 11 overgrowth, possibly influencing fermentation process, leading to an increased production of gas or byproducts that can exacerbate 0.3 0.9 0.6 gut irritation.

Gut Microbiome Analysis

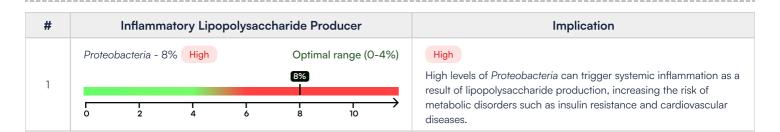
Comprehensive Analysis, Shotgun Sequencing

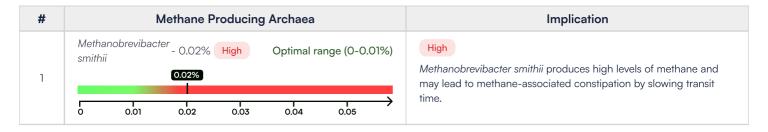

John Doe VT1-123DC


For enquiries, email hello@vitract.com

Pathobionts - 64

Pathobionts are microorganisms that typically reside harmlessly in the gut but have the potential to cause disease under certain conditions or when the host's immune system is compromised. Pathobionts in this test are shown in 4 sub-categories:




Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

John Doe VT1-123DC

For enquiries, email hello@vitract.com

Pathogens

Pathogens in the gut can cause disease or infection when they colonize the gastrointestinal tract.

Detected	Not detected
Defected	Noi delected

Detected	Not detected		
#	Pathogens	Implication	
1	Campylobacter jejuni - 1.2% Detected	Campylobacter jejuni can penetrate the gut surface and produce enterotoxins that disrupt the host functions, triggering inflammation and cell death.	
2	Clostridiodes difficile - 1.3% Detected	C. difficile produces toxin A and B that disrupts epithelial cell cytoskeletons leading to cell death and loss of gut barrier integrity and triggering inflammatory responses.	
3	Helicobacter pylori - 1.2% Detected	H. pylori neutralizes gastric acids by producing ammonia in the stomach, creating an environment suitable for opportunistic pathogens to colonize the stomach. H. pylori also promotes inflammation and cell death, leading to formation of stomach ulcers.	
4	Salmonella enterica - 1.2% Detected	Salmonella enterica at high levels can cause diarrhea and gastrointestinal issues.	
5	Salmonella typhi - 1.2% Detected	Salmonella typhi can hijack immune cells in the body to spread systemically to sites such as the liver and spleen to cause infections such as typhoid fever.	
6	Shigella dysenteriae - 1.3% Detected	Shigella dysenteriae produces shiga toxin that disrupts the host metabolic functions and contributes to cell death and eventually systemic complications such as hemolytic uremic syndrome.	
7	Staphylococcus aureus - 1.3% Detected	S. aureus produces a toxin (Panton-Valentine leukocidin) that forms pores in host cells causing cell lysis and may cause extensive tissue damage.	
8	Vibrio cholerae - 1.2% Detected	Cholera toxins increase intestinal permeability to water, leaving the intestine vulnerable to water loss and watery diarrhea.	
9	Yersinia enterolytica - 1.2% Detected	Inject molecules called yop effectors that disrupts cellular process, inhibit uptake by immune cells and suppress host response and can cause yersiniosis.	
10	Yersinia pestis - 1.2% Detected	Y pestis produce proteins called Yop effectors inhibit immune cell uptake and activation and may cause plague. Y. pestis multiplies primarily in the blood, leading to tissue necrosis and shock.	
11	Yersinia pseudotuberculosis - 1.2% Detected	Y. pseudotuberculosis uses yop proteins to evade the immune system causing mesenteric lymphadenitis by targeting the Peyer's patches in the gut.	

Gut Microbiome Analysis Comprehensive Analysis - Deep Shotgun Sequencing

John Doe VT1-123DC 17 Feb 2025

For enquiries, email hello@vitract.com

FUNGI

#	Fungi	Implication
1	Candida albicans - 0.5% Detected	Candida albicans is a fungus that overgrows during dysbiosis, leading to fungal infections and gut inflammation by disrupting epithelial integrity.
2	Candida spp 0.5% Not detected	Not detected
3	Geotrichum spp 2.5% Not detected	Not detected
4	Microsporidium spp 0.5% Not detected	Not detected
5	Rhodotorula spp 1.2% Not detected	Not detected

VIRUSES

#	Viruses	Implication	
1	Adenovirus F40/41 Detected	Adenovirus F40/41 is a leading cause of viral gastroenteritis, particularly in children. Overabundance triggers diarrhea and inflammation by infecting intestinal epithelial cells and disrupting barrier integrity.	
2	Astrovirus Not detected	Not detected	
3	Cytomegalovirus (CMV) Not detected	Not detected	
4	Epstein-Barr virus (EBV) Not detected	Not detected	
5	Norovirus GI Detected	Norovirus GI is highly infectious and the leading cause of acute gastroenteritis. It disrupts epithelial tight junctions and induces cytokine storms, leading to diarrhea and inflammation. NoV infections are linked to post-infectious irritable bowel syndrome (IBS) and possibly inflammatory bowel disease (IBD).	
6	Norovirus GII	Not detected	
7	Rotavirus A Not detected	Not detected	
8	Sapovirus Not detected	Not detected	

Gut Microbiome Analysis Comprehensive Analysis - Deep Shotgun Sequencing

John Doe VT1-123DC 17 Feb 2025

For enquiries, email hello@vitract.com

PROTOZOA

#	Protozoa	Implication	
1	Balantidium coli Not detected	Not detected	
2	Blastocystis spp. Not detected	Not detected	
3	Chilomastix mesnili Not detected	Not detected	
4	Cryptosporidium Not detected	Not detected	
5	Cyclospora spp. Not detected	Not detected	
6	Dientamoeba fragilis Not detected	Not detected	
7	Entamoeba coli Not detected	Not detected	
8	Entamoeba hartmanni Detected	Entamoeba hartmanni is a non-pathogenic amoeba commonly found in the human gastrointestinal tract. Currently, there is limited evidence to suggest that an overabundance of <i>E. hartmanni</i> adversely affects gut health or contributes to diseases. However, high levels of <i>E. hartmanni</i> may indicate poor sanitary conditions or exposure to contaminated food or water sources, raising concerns about potential exposure to other pathogens.	
9	Entamoeba histolytica Not detected	Not detected	
10	Giardia Detected	Giardia is a flagellated protozoan causing giardiasis. Overgrowth disrupts nutrient absorption by damaging villi, leading to malabsorption, diarrhea, and chronic gut inflammation.	
11	Pentatrichomonas hominis Not detected	Not detected	

Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

John Doe VT1-123DC

For enquiries, email hello@vitract.com

PARASITIC HELMINTHS (WORMS)

#	Parasitic Helminths (Worms)	Implication	
1	Ancylostoma duodenale Not detected	Not detected	
2	Ascaris lumbricoides Not detected	Not detected	
3	Diphyllobothrium latum Not detected	Not detected	
4	Dipylidium caninum Not detected	Not detected	
5	Enterobius vermicularis Not detected	Not detected	
6	Fasciola spp. Not detected	Not detected	
7	Hymenolepis Not detected	Not detected	
8	Mansonella spp. Detected	Mansonella species are filarial nematodes. Human mansonellosis is caused by three filarial species: Mansonella perstans, M. ozzardi, and M. streptocerca. They induce immune activation, which can impair gut function indirectly.	
9	Necator americanus Not detected	Not detected	
10	Schistosoma Detected	Schistosoma species are trematodes causing schistosomiasis. The adult parasite can evade the immune system for years and induce granulomatous inflammation, leading to fibrosis and portal hypertension, disrupting gut and liver function.	
11	Strongyloides stercoralis Not detected	Not detected	
12	Taenia solium Not detected	Not detected	
13	Taenia spp Not detected	Not detected	
14	Trichuris trichiura Not detected	Not detected	

Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

John Doe | VT1-123DC 17 Feb 2025

For enquiries, email hello@vitract.com

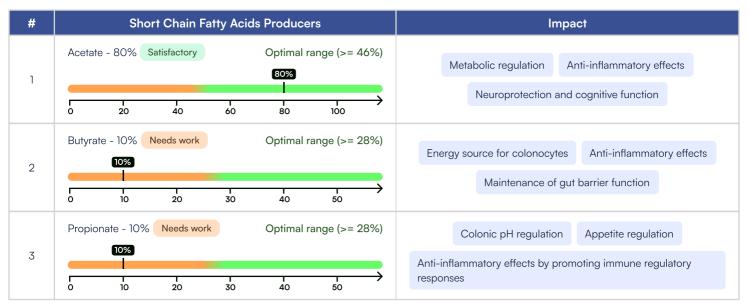
SECTION 3: Antimicrobial resistance genes

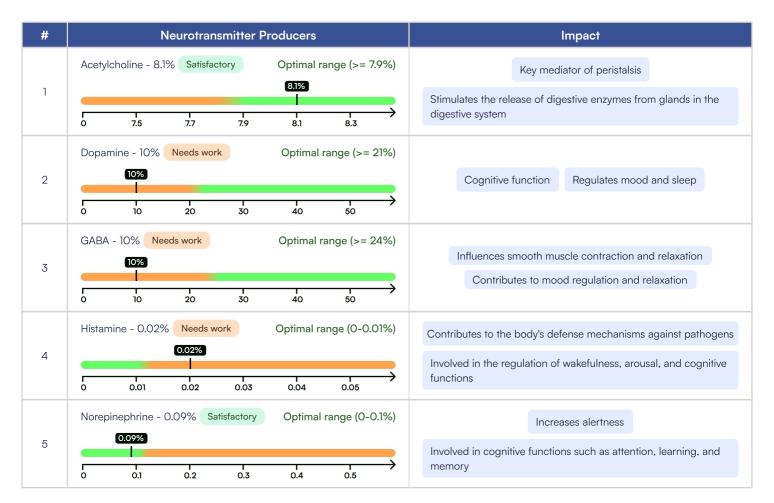
Universal Antimicrobial resistance	Result
b-lactams	Positive
Aminoglycosides	Positive
Fluoroquinolones	Negative
Macrolides_lincosamines_streptogramin B	Positive
Polymixin_colistin	Negative
Sulfonamides_Trimethoprim	Negative
Vancomycin	Positive

Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

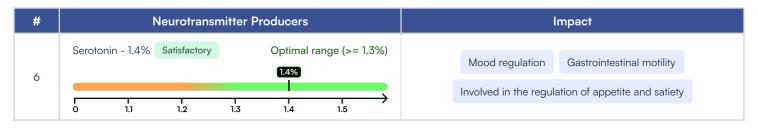
John Doe VT1-123DC

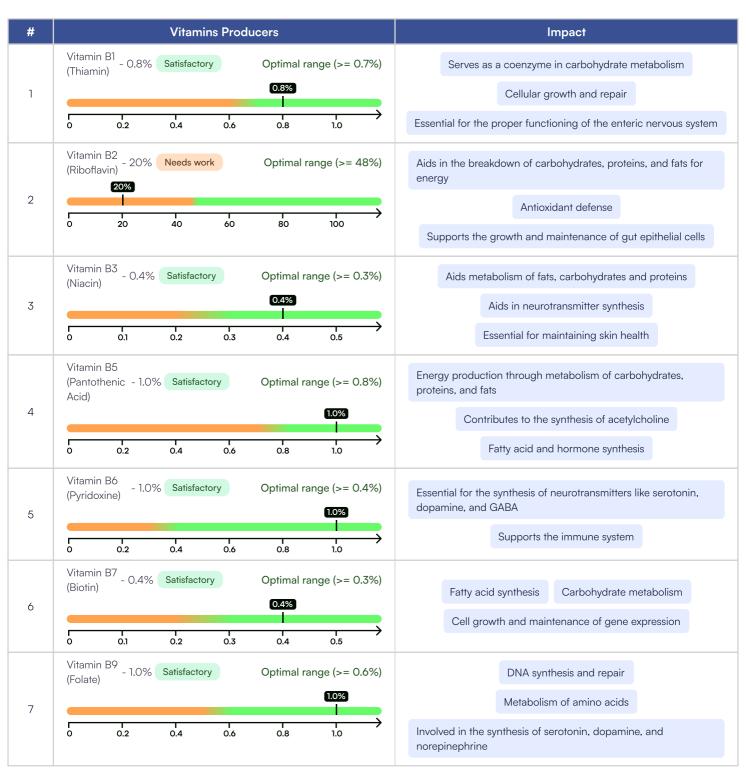

For enquiries, email hello@vitract.com



SECTION 4: Insights into metabolites, inflammatory and digestive markers

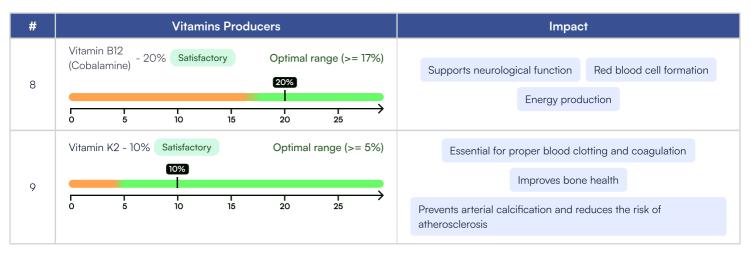
Please note that the metabolites are computed based on the microbial gene content and metabolic pathways related to metabolite production. This is not a direct measurement of the metabolite or enzyme.


Gut Microbiome Analysis


Comprehensive Analysis - Deep Shotgun Sequencing

John Doe VT1-123DC

For enquiries, email hello@vitract.com



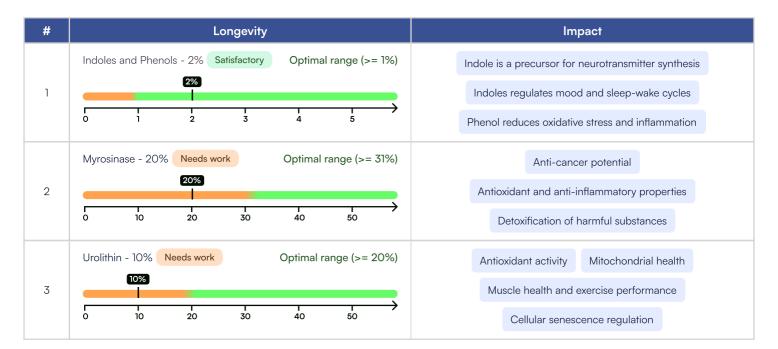
Gut Microbiome Analysis

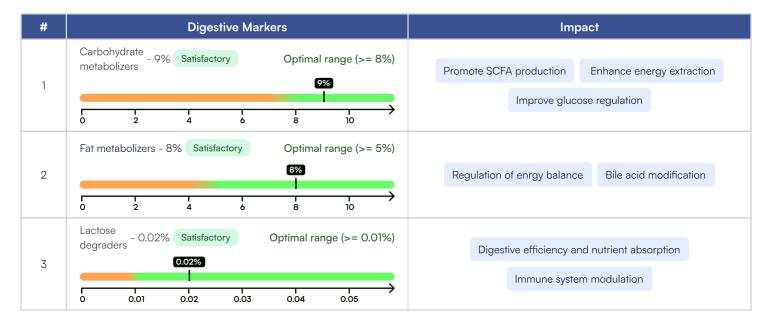
Comprehensive Analysis - Deep Shotgun Sequencing

John Doe VT1-123DC

For enquiries, email hello@vitract.com

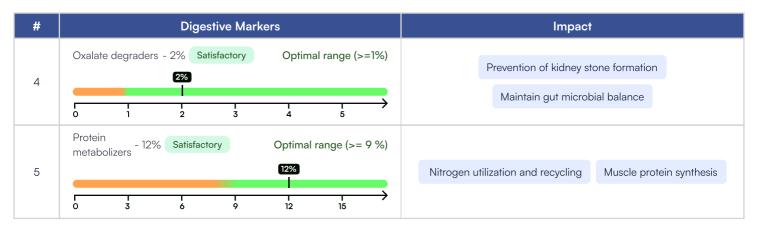
Gut Microbiome Analysis


Comprehensive Analysis - Deep Shotgun Sequencing


John Doe VT1-123DC 17 Feb 2025

For enquiries, email hello@vitract.com

Detoxification Biomarkers and Women's Health Impact Beta



Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

John Doe VT1-123DC

For enquiries, email hello@vitract.com

Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

John Doe VT1-123DC 17 Feb 2025

For enquiries, email hello@vitract.com

SECTION 5: Food and supplement recommendation

Bacteria out of range

Akkermansia Low , Bifidobacterium Low , Bilophila High Blautia Low Clostridium High Coprococcus Optimal Escherichia coli High Modifier **Bacteria** shifted Scientific evidence Increase Akkermansia^{1,3,4} **FOOD** 1. Fish Oil, but Not Olive Oil, Ameliorates Depressive-Like Behavi... Increase Bifidobacterium^{5,7,8} 2. Ascophyllum nodosum polysaccharide regulates gut microbio... To include: extra virgin olive oil¹, sea Reduce Bilophila^{9,10,11,12,13} weed², chaga (mushroom)³, Pulses⁵, 3. Methanol extract of Inonotus obliquus improves type 2 diabe... Konjaku flour⁷, white button Increase Blautia^{2,15,16,17} mushrooms⁸, rye⁹, buckwheat¹⁰, 4. Concentrated Raw Fibers Enhance the Fiber-Degrading Capa... Reduce Clostridium^{19,20,21} Pistachio¹¹, grapes ¹², Garlic¹³, 5. In vitro fermentation of lupin seeds (Lupinus albus) and broa... Reduce Coprococcus²² pomegranate¹⁵, high amylose 6. Dietary supplementation with olive oil co-products rich in... cornstarch¹⁶, broccoli¹⁷, almonds/ Reduce Escherichia coli^{23,24,25,26} almond skins¹⁹, green tea²⁰, Reduce Proteobacteria^{3,28,29,30,31} 7. Amelioration of gut dysbiosis and gastrointestinal motility by ... potatoes²², gallic acid(food Increase Roseburia^{32,15,33} 8. Effect of Agaricus bisporus Polysaccharides on Human Gut... additive)²³, basil²⁴, pomegranate blossom tea²⁵, 9. The effects of fermented rye products on gut microbiota and... walnuts²⁸, Okra²⁹, rhubarb³⁰, 10. Tartary Buckwheat (Fagopyrum tataricum) Ameliorates Lipid... mulberry fruit polysaccharide31, Kiwifruit³³ 11. Pistachio Consumption Alleviates Inflammation and Improves.. 12. Table grape consumption reduces adiposity and markers of ... 13. Black garlic melanoidins prevent obesity, reduce serum LPS... 14. Resveratrol modulates the gut microbiota of cholestasis in... Reduces Akkermansia4 Increase Bilophila14 15. Effects of Pomegranate Peel Polyphenols Combined with Inu... To avoid: oats, pork4, red wine Reduces Blautia¹⁸ full references for recommendations can be found on polyphenols¹⁴, wheat¹⁸, lemon²⁷, supplementarypages Increase Escherichia coli²⁷ glucose (sugar)34 Reduces Roseburia³⁴ **PROBIOTICS** Increase Akkermansia^{1,2} 1. Probiotic Lactobacilli Administration Induces Changes in the F... Increase Bifidobacterium³ To include: Lactobacillus Johnsonii¹, 2. Bifidobacterium longum subsp. longum BL21 ameliorates alc... Bifidobacterium longum², Reduce Bilophila^{5,6} 3. Mouse intestinal microbiome modulation by oral administrat... Bifidobacterium adolescentis³, Increase Blautia7,8 4. Administration of Aspergillus oryzae suppresses DSS-induced... Bifidobacterium bifidum⁵, Reduce Clostridium^{10,11} Lactobacillus plantarum⁶, 5. Bifidobacterium bifidum TMC3115 ameliorates milk protein a... Reduce Coprococcus¹⁴ Lactobacillus rhamnosus⁸, 6. Effects of microencapsulated Lactobacillus plantarum LIP-1 on... Lactobacillus fermentum¹⁰, Reduce Escherichia coli^{16,17} Lactobacillus caseishirota¹¹, 7. Exopolysaccharides from Lactobacillus plantarum YW11 impr ... Reduce Proteobacteria¹⁹ Saccharomyces boulardii¹⁴, Increase Roseburia²² 8. Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium.. Lactobacillus rhamnosus gg¹⁷, Bacillus amyloliquefaciens¹⁹ 9. Protective effect of Pediococcus pentosaceus LiO5 on diarrh... 10. The Impact in Intestines and Microbiota in BALB/c Mice Thr... 11. Intestinal Microbiota Profiles of Healthy Pre-School and Sch.. 12. Gaseous CO2 signal initiates growth of butyric-acid-produci ... Reduces Bifidobacterium⁴ 13. Lactobacillus plantarum-Derived Extracellular Vesicles Modul... To avoid: Koji aspergillus oryzae⁴, Reduces Blautia9 Pediococcus pentosaceus9, 14. Saccharomyces cerevisiae boulardii CNCM I-1079 suppleme... Increase Clostridium¹² bacillus subtilis, Lactobacillus 15. Evaluation of the therapeutic effect and dose-effect of Bifido... Increase Coprococcus¹⁵ acidophilus¹², Bifidobacterium

Increase Escherichia coli¹⁸

Increase Proteobacteria²¹

Reduces Roseburia²³

breve¹⁵, Bacillus subtilis¹⁸,

Lactobacillus paracasei²¹,

LentiLactobacillus buchneri²³

full references for recommendations can be found on

supplementarypages

Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

John Doe | VT1-123DC 17 Feb 2025

For enquiries, email hello@vitract.com

SECTION 5: Food and supplement recommendation

Bacteria out of range

Modifier	Bacteria shifted	Scientific evidence
SUPPLEMENTS	Increase Akkermansia ¹	Rutin alleviates colon lesions and regulates gut microbiota in d.
To include: Rutin ¹ , quercetin ⁵ , bentonite ⁷ , Curcumin ⁹ , whey protein	Reduce Bilophila ⁵	2.Increasing breast milk betaine modulates Akkermansia abund
	Increase Blautia ⁷	3.Structural Insights into Amelioration Effects of Quercetin and I
supplement ¹⁰ , Glucomannan ¹² , Baicalin ¹⁴	Reduce Clostridium ⁹	4. Shen-Ling-Bai-Zhu-San (SL) and SL Derived-Polysaccha
	Reduce Coprococcus ¹⁰	5.A combination of quercetin and resveratrol reduces obesity in
	Reduce Escherichia coli ¹² Reduce Proteobacteria ¹⁴	6. Propionate-Producing Consortium Restores Antibiotic-Induc
	Reduce Profeobacieria	7. Microbiome Remodeling via the Montmorillonite Adsorption
		8. Glucosamine Ameliorates Symptoms of High-Fat Diet-Fed Mic
		9. Prebiotic Potential and Chemical Composition of Seven Culi
		10. Effect of a Co-Feed Liquid Whey-Integrated Diet on Crossbr.
		11. Taxifolin increased semen quality of Duroc boars by improving
	Reduces Akkermansia ²	12. Antibacterial activity of konjac glucomannan/chitosan blend
	Reduces Bifidobacterium ⁴	13. Preparation of selenium/zinc-enriched probiotics and their ef
	Increase Bilophila ⁶	14. Protective effect of baicalin on the regulation of Treg/Th17
-	Reduces <i>Blautia</i> ⁸ Increase <i>Coprococcus</i> ¹¹	15. Helicobacter pylori eradication with bismuth quadruple thera
To avoid: betaine ² , Shen Ling Bai Zhu San ⁴ , propionate ⁶ ,	Increase Escherichia coli ¹³	full references for recommendations can be found on
Glucosamine ⁸ , Taxifolin ¹¹ , selenium ¹³ ,	Increase Proteobacteria ¹⁵	supplementarypages
Bismuth Salts ¹⁵ , cannabinoids ¹⁶	Reduces Roseburia ¹⁶	
PREBIOTICS	Increase Akkermansia ¹	Pretreatment with chitosan oligosaccharides attenuate experi
To include: chitooligosaccharides ¹ ,	Increase Bifidobacterium ²	Relative abundance of the Prevotella genus within the human.
arabinogalactan², inulin⁴, lactulose⁵,	Reduce Bilophila ^{4,5}	3. Characterization of fecal fat composition and gut derived fec
gum arabic ⁷ , galacto- oligosaccharides ⁸ , fructo-	Reduce Clostridium ^{7,8}	4. Prebiotic inulin-type fructans induce specific changes in the h
oligosaccharides ⁹ , mastic gum ¹⁰	Reduce Escherichia coli ^{9,10}	5. Effect of lactulose intervention on gut microbiota and short ch
		6. Diets high in resistant starch and arabinoxylan modulate diges
		7. Pharmacological benefits of Acacia against metabolic disease
		Prebiotic effect of an infant formula supplemented with galac.
		Dietary cellulose, fructooligosaccharides, and pectin modify
		10. Spices as Sustainable Food Preservatives: A Comprehensive.
		11. In vitro fermentation of raffinose by the human gut bacteria
		12. Chitooligosaccahrides: Digestion characterization and effect
		13. Effect of Prebiotic on Microbiota, Intestinal Permeability, and
		full references for recommendations can be found on supplementarypages
To avoid: raffinose(sugar beet) ¹¹ ,	Increase Escherichia coli ¹¹	
oligofructose-enriched inulin ¹³	Reduces Roseburia ¹³	

Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

John Doe VT1-123DC

For enquiries, email hello@vitract.com

SECTION 5: Food and supplement recommendation

Bacteria out of range

Modifier	Bacteria shifted	Scientific evidence
IFESTYLE CHANGES	Increase Bifidobacterium ²	1. Fucoidan Improves D-Galactose-Induced Cognitive Dysfunct
To include: mediterranean diet², nuts³, Fiber⁴, Exercise ⁹		 2.The gut microbial community in metabolic syndrome patients 3. Pistachio Consumption Alleviates Inflammation and Improves 4. Interactions between Diet, Bile Acid Metabolism, Gut Microbi 5. Smoking cessation alters intestinal microbiota: insights from 6. [Clinical benefits after soluble dietary fiber supplementation 7. Gut Microbiome Composition in Non-human Primates 8. Effects of the dietary protein level on the microbial composition 9. Effect of an 8-week Exercise Training on Gut Microbiota in 10. Metagenomic analyses of alcohol induced pathogenic alte
To avoid: high-saturated fat diet ¹ , smoking ⁵ , low protein diet ⁸ , alcoholic beverages ¹⁰	Reduces Akkermansia ¹ Reduces Blautia ⁵ Increase Coprococcus ⁸ Increase Proteobacteria ¹⁰	11. Nuts and their Effect on Gut Microbiota, Gut Function and 12. Gut microbiome and metabolome in a non-human primate full references for recommendations can be found on supplementarypages

Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

John Doe VT1-123DC

17 Feb 2025

For enquiries, email hello@vitract.com

SUPPLEMENTARY TABLE 1: References for dietary recommendations.

Food references

- 1. Fish Oil, but Not Olive Oil, Ameliorates Depressive-Like Behavior and Gut Microbiota Dysbiosis in Rats under Chronic Mild Stress.
- 2. Ascophyllum nodosum polysaccharide regulates gut microbiota metabolites to protect against colonic inflammation in mice.
- 3. Methanol extract of Inonotus obliquus improves type 2 diabetes mellitus through modifying intestinal flora.
- 4. Concentrated Raw Fibers Enhance the Fiber-Degrading Capacity of a Synthetic Human Gut Microbiome.
- 5. In vitro fermentation of lupin seeds (Lupinus albus) and broad beans (Vicia faba): dynamic modulation of the intestinal microbiota and metabolomic output.
- 6. Dietary supplementation with olive oil co-products rich in polyphenols: a novel nutraceutical approach in monogastric animal nutrition.
- 7. Amelioration of gut dysbiosis and gastrointestinal motility by konjac oligo-glucomannan on loperamide-induced constipation in mice.
- 8. Effect of Agaricus bisporus Polysaccharides on Human Gut Microbiota during In Vitro Fermentation: An Integrative Analysis of Microbiome and Metabolome
- 9. The effects of fermented rye products on gut microbiota and their association with metabolic factors in Chinese adults an explorative study.
- 10. Tartary Buckwheat (Fagopyrum tataricum) Ameliorates Lipid Metabolism Disorders and Gut Microbiota Dysbiosis in High-Fat Diet-Fed Mice.
- 11. Pistachio Consumption Alleviates Inflammation and Improves Gut Microbiota Composition in Mice Fed a High-Fat Diet.
- 12. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice.
- 13. Black garlic melanoidins prevent obesity, reduce serum LPS levels and modulate the gut microbiota composition in high-fat diet-induced obese C57BL/6J mice.
- 14. Resveratrol modulates the gut microbiota of cholestasis in pregnant rats.
- 15. Effects of Pomegranate Peel Polyphenols Combined with Inulin on Gut Microbiota and Serum Metabolites of High-Fat-Induced Obesity Rats.
- 16. Starch acylation of different short-chain fatty acids and its corresponding influence on gut microbiome and diabetic indexes.
- 17. Sulforaphane and Sulforaphane-Nitrile Metabolism in Humans Following Broccoli Sprout Consumption: Inter-individual Variation, Association with Gut Microbiome Compos...
- 18. Diet Mediate the Impact of Host Habitat on Gut Microbiome and Influence Clinical Indexes by Modulating Gut Microbes and Serum Metabolites.
- 19. Benefits of Nut Consumption on Insulin Resistance and Cardiovascular Risk Factors: Multiple Potential Mechanisms of Actions.
- 20. In Vivo Effects of Tea Polyphenol Intake on Human Intestinal Microflora and Metabolism.
- 21. Effect of garlic powder on the growth of commensal bacteria from the gastrointestinal tract.
- 22. Potato resistant starch inhibits diet-induced obesity by modifying the composition of intestinal microbiota and their metabolites in obese mice.
- 23. Antiultraviolet, Antioxidant, and Antimicrobial Properties and Anticancer Potential of Novel Environmentally Friendly Amide-Modified Gallic Acid Derivatives
- 24. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates.
- 25. Antimicrobial activities of widely consumed herbal teas, alone or in combination with antibiotics: an in vitro study.
- 26. Tartary buckwheat protein prevented dyslipidemia in high-fat diet-fed mice associated with gut microbiota changes.
- 27. Ascorbic acid-dependent gene expression in Streptococcus pneumoniae and the activator function of the transcriptional regulator UlaR2.
- 28. Effects of Walnut and Pumpkin on Selective Neurophenotypes of Autism Spectrum Disorders: A Case Study.
- 29. Supplementation of okra seed oil ameliorates ethanol-induced liver injury and modulates gut microbiota dysbiosis in mice.
- 30. What we already know about rhubarb: a comprehensive review.
- 31. Mulberry leaves ameliorate obesity through enhancing brown adipose tissue activity and modulating gut microbiota.
- 32. Effects of Konjaku Flour on the Gut Microbiota of Obese Patients.
- 33. Butyrogenic, bifidogenic and slight anti-inflammatory effects of a green kiwifruit powder (Kiwi FFG®) in a human gastrointestinal model simulating mild constipation.
- 34. A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota.

Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

John Doe VT1-123DC

17 Feb 2025

For enquiries, email hello@vitract.com

SUPPLEMENTARY TABLE 1: References for dietary recommendations.

Probiotics references

- 1. Probiotic Lactobacilli Administration Induces Changes in the Fecal Microbiota of Preweaned Dairy Calves.
- 2. Bifidobacterium longum subsp. longum BL21 ameliorates alcoholic liver disease in mice through enhancement of the hepatic antioxidant capacity and modulation of the gut...
- 3. Mouse intestinal microbiome modulation by oral administration of a GABA-producing Bifidobacterium adolescentis strain.
- 4. Administration of Aspergillus oryzae suppresses DSS-induced colitis.
- 5. Bifidobacterium bifidum TMC3115 ameliorates milk protein allergy in by affecting gut microbiota: A randomized double-blind control trial.
- 6. Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats.
- 7. Exopolysaccharides from Lactobacillus plantarum YW11 improve immune response and ameliorate inflammatory bowel disease symptoms.
- 8. Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level: A preliminary study.
- 9. Protective effect of Pediococcus pentosaceus Li05 on diarrhea-predominant irritable bowel syndrome in rats.
- 10. The Impact in Intestines and Microbiota in BALB/c Mice Through Consumption of Milk Fermented by Potentially Probiotic Lacticaseibacillus casei SJRP38 and Limosilactob...
- 11. Intestinal Microbiota Profiles of Healthy Pre-School and School-Age Children and Effects of Probiotic Supplementation.
- 12. Gaseous CO2 signal initiates growth of butyric-acid-producing Clostridium butyricum in both pure culture and mixed cultures with Lactobacillus brevis.
- 13. Lactobacillus plantarum-Derived Extracellular Vesicles Modulate Macrophage Polarization and Gut Homeostasis for Alleviating Ulcerative Colitis.
- 14. Saccharomyces cerevisiae boulardii CNCM I-1079 supplementation in finishing male pigs helps to cope with heat stress through feeding behaviour and gut microbiota mo...
- 15. Evaluation of the therapeutic effect and dose-effect of Bifidobacterium breve on the primary Clostridioides difficile infected mice.
- 16. Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens.
- 17. Therapeutic potential of two probiotics in inflammatory bowel disease as observed in the trinitrobenzene sulfonic acid model of colitis.
- 18. Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers.
- 19. Probiotic Bacillus amyloliquefaciens C-1 Improves Growth Performance, Stimulates GH/IGF-1, and Regulates the Gut Microbiota of Growth-Retarded Beef Calves.
- 20. Bifidobacterium adolescentis IM38 ameliorates high-fat diet-induced colitis in mice by inhibiting NF-?B activation and lipopolysaccharide production by gut microbiota.
- 21. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults.
- 22. A metagenomic study of the preventive effect of Lactobacillus rhamnosus GG on intestinal polyp formation in Apc(Min/+) mice.
- 23. Exopolysaccharides from Lactobacillus buchneri TCP016 Attenuate LPS- and d-GalN-Induced Liver Injury by Modulating the Gut Microbiota.

Supplements references

- 1. Rutin alleviates colon lesions and regulates gut microbiota in diabetic mice.
- 2. Increasing breast milk betaine modulates Akkermansia abundance in mammalian neonates and improves long-term metabolic health.
- 3. Structural Insights into Amelioration Effects of Quercetin and Its Glycoside Derivatives on NAFLD in Mice by Modulating the Gut Microbiota and Host Metabolism.
- 4. Shen-Ling-Bai-Zhu-San (SL) and SL Derived-Polysaccharide (PL) Ameliorate the Severity of Diarrhea-Induced by High Lactose via Modification of Colonic Fermentation.
- 5. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota.
- 6. Propionate-Producing Consortium Restores Antibiotic-Induced Dysbiosis in a Dynamic in vitro Model of the Human Intestinal Microbial Ecosystem.
- 7. Microbiome Remodeling via the Montmorillonite Adsorption-Excretion Axis Prevents Obesity-related Metabolic Disorders.
- 8. Glucosamine Ameliorates Symptoms of High-Fat Diet-Fed Mice by Reversing Imbalanced Gut Microbiota.
- 9. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts.
- 10. Effect of a Co-Feed Liquid Whey-Integrated Diet on Crossbred Pigs' Fecal Microbiota.
- 11. Taxifol inincreased semen quality of Duroc boars by improving gut microbes and blood metabolites

Gut Microbiome Analysis

Comprehensive Analysis - Deep Shotgun Sequencing

John Doe VT1-123DC

17 Feb 2025

For enquiries, email hello@vitract.com

SUPPLEMENTARY TABLE 1: References for dietary recommendations.

Prebiotics references

- 1. Pretreatment with chitosan oligosaccharides attenuate experimental severe acute pancreatitis via inhibiting oxidative stress and modulating intestinal homeostasis.
- 2. Relative abundance of the Prevotella genus within the human gut microbiota of elderly volunteers determines the inter-individual responses to dietary supplementation with ...
- 3. Characterization of fecal fat composition and gut derived fecal microbiota in high-fat diet fed rats following intervention with chito-oligosaccharide and resistant starch com...
- 4. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota.
- 5. Effect of lactulose intervention on gut microbiota and short chain fatty acid composition of C57BL/6J mice.
- 6. Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs.
- 7. Pharmacological benefits of Acacia against metabolic diseases: intestinal-level bioactivities and favorable modulation of gut microbiota.
- 8. Prebiotic effect of an infant formula supplemented with galacto-oligosaccharides: randomized multicenter trial. Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level: A preliminary study.
- 9. Dietary cellulose, fructooligosaccharides, and pectin modify fecal protein catabolites and microbial populations in adult cats.
- 10. Spices as Sustainable Food Preservatives: A Comprehensive Review of Their Antimicrobial Potential.
- 11. In vitro fermentation of raffinose by the human gut bacteria.
- 12. Chitooligosaccahrides: Digestion characterization and effect of the degree of polymerization on gut microorganisms to manage the metabolome functional diversity in vitro.
- 13. Effect of Prebiotic on Microbiota, Intestinal Permeability, and Glycemic Control in Children With Type 1 Diabetes.

Lifestyle changes references

- 1. https://pubmed.ncbi.nlm.nih.gov/38794753/Fucoidan Improves D-Galactose-Induced Cognitive Dysfunction by Promoting Mitochondrial Biogenesis and Maintaining Gut Microbiome Homeostasis.
- 2. The gut microbial community in metabolic syndrome patients is modified by diet.
- 3. Pistachio Consumption Alleviates Inflammation and Improves Gut Microbiota Composition in Mice Fed a High-Fat Diet.
- 4. Interactions between Diet, Bile Acid Metabolism, Gut Microbiota, and Inflammatory Bowel Diseases.
- 5.Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH.
- 6. [Clinical benefits after soluble dietary fiber supplementation: a randomized clinical trial in adults with slow-transit constipation].
- 7. Gut Microbiome Composition in Non-human Primates Consuming a Western or Mediterranean Diet.
- 8. Effects of the dietary protein level on the microbial composition and metabolomic profile in the hindgut of the pig.
- 9. Effect of an 8-week Exercise Training on Gut Microbiota in Physically Inactive Older Women.
- 10. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment.
- 11. Nuts and their Effect on Gut Microbiota, Gut Function and Symptoms in Adults: A Systematic Review and Meta-Analysis of Randomised Controlled Trials.
- 12. Gut microbiome and metabolome in a non-human primate model of chronic excessive alcohol drinking.